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theorem tells us that the corresponding Schradinger eigenvalues are ordered E, < E,. We 
present some simple conditions which allow us to predict such spectral ordering for the 
ground state, even when the graphs of the potentials cross aver. As illustrations, the 
truncated quanic oscillator and the Yukawa potential are studied. By allowing Coulomb 
'tangents' to cross over the Yukawa in various ways, we an able to improve earlier energy 
upper bounds which we had obtained by representing the Yukawa potential as a smooth 
transformation of the Coulomb potential, and also to augment these results with lower 
bounds. 
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1. Introduction 

We consider a single particle which obeys non-relativistic quantum mechanics and 
moves in the attractive symmetric potential V(x) .  In suitable units the Hamiltonian 
H of this problem is given by 

H = K +  V(x)  (1.1) 
where K = -A is the kinetic-energy operator. It is a well known consequence of the 
min-max characterization [l-31 of Schrodinger eigenvalues that, if we compare two 
potentials Vt(x)  and V2(x)?  and if V: < V2? then a!! the respective pain ofcigcnva!oes 
are similarly ordered E, < E2. This result is often called the comparison theorem of 
quantum mechanics. 

If the graphs of two potentials cross over, then there seems little reason to hope 
that any simple spectral relationship could exist. For example, the power-law potentials 
1x1, x2, and x4 shown in figure 1 cross over at 1x1 = 1, and the (ground-state) Schrodinger 
eigenvalues (in one dimension) are respectively E, = 1.018 79, E, = 1 and E4= 1.060 36. 
In a previous paper [4] we studied the eigenvalues Eq corresponding to  the potentials 
lxlq by representing one power potential as a transformation of another; in this way 
we could claim that the rather complicated function E, was, in a sense, 'understood: 
However, the pure power laws are a very particular family of potentials and we should 
like to explore the possibility of more general results. 

If we were to truncate the above three power-law potentials so that V(x)  = 1 for 
1x11 1, then the potentials would be clearly ordered V4< V2< V, and the comparison 
theorem would immediately tell us that E4 < E, < E,. In figure 2 we show the graphs 
of these same three power-law potentials truncated now at V(x)  = 1.75 so that the 
potentials cross over at 1x1 = 1 .  It turns out that the eigenvalues become respectively 
E4 = 0.830 67, E2 = 0.903 76 and E, = 0.992 77. On the basis of some very simple tests, 
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Figure 1. Three power-law potentials 1x1, x2,  and x4 which cross over at 1x1 = 1. It is not 
easy to predict that the corresponding ground-state eigenvalues E , ,  E,, and E4 are ordered 
E,< E ,  < E,. 

-2 x 2 
M p r e  2. Three power-law potentials 1x1, x2, and XI, truncated so that V ( x )  =s 1.75. Even 
!hough these potentials cross over at 1x1 = I! the new comparison theory predicts the correct 
spectral ordering E4 < E ,  < E , .  

the theory which we develop in this paper allows us to predict such spectral ordering, 
at least for the ground-state energy. Consequently, many of the comparison approxima- 
tions which we commonly use in quantum mechanics can immediately be improved. 

There is one central idea that generates all the new energy bounds: we replace the 
condition V, < V, with the weaker condition U, < U,, where O(x) = J; V ( f j p ( f j  at, 
and p is a suitable positive non-increasing function. In section 2 we discuss some 
general assumptions and results for problems in one dimension, and we use the choices 
p = 1, and also p = Jli, where $! is the ground state corresponding to V;. In section 4 
we extend these results to problems in three dimensions. 

P X  _., 
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In sections 3 and 5 we consider two examples, the truncated quartic oscillator, and 
the Yukawa potential. Upper and lower energy bounds for the truncated quartic 
oscillator are found by comparing it with the soluble square-well potential. In a previous 
paper [ 5 ]  we expressed the Yukawa potential as a smooth concave transformation of 
the Coulomb potential, and we used this ‘envelope representation’ to estimate the 
Yukawa eigenvalues. Since we can now allow the Coulomb ‘tangents’ to cross over 
the Yukawa potential in various ways, this leads to improved upper energy bounds 
and also to some new lower bounds. 

2. Assumptions nod basic general results in one dimension 

We consider the problem in one spatial dimension and we assume that the real potential 
V ( x )  is (i) finite, (ii) symmetric about x = 0, and (iii) attractive, that is to say, monotone 
increasing on [0, m). The ground-state Q satisfies Schrodinger’s equation: 

-$”(x)+ V ( X ) $ ( X ) =  EQ(x) .  (2.1) 

Since V is real and we are considering only bound states, we may assume that the 
wavefunctions are real. Because the ground state has no nodes, we may assume without 
loss of generality that the (otherwise un-normalized) ground state satisfies Q(0) = 1. 
Consequently Q ( x )  > 0, for all x. Since, by symmetry, the solutions are either even or 
odd, the positive ground state Q must be even. We may therefore conclude that f(0) = 0. 
We have assumed that V ( x )  is finite in order to avoid the (interesting) pathologies 
[6,7] of potentials like -1xI-I. Our results now hinge on various kinds of monotone 
behaviour. 

Our first claim is that the ground state Q, like the potential, is monotone on [0, m), 
but decreasing; that is to say, 

*’(X)==O x E [0, m). (2.2) 

We show this by the following elementary argument. Since V ( x )  is monotone increasing 
on [O,m), and E cannot be below V(O), without loss of generality, we may suppose 
that V ( a )  = E, for some a > 0. From (2.1) we find that $”(x) s 0 on [0, a )  and Q”(x)  0 
on (a,  05). Since we have Q’(0) = 0, it follows that g’(x) <O on [0, a]. Since I) is square 
integrable, we know that Q’(m) = 0. Hence, on the interval [a ,  m), Q’(x) must increase 
to zero. Consequently, Q’(x) s 0 for all x > 0, as claimed. 

We now consider two potentials V , ( x )  and V 2 ( x )  both of the type described above. 
We have two Schrodinger equations for the respective ground states Q, and Q2 and 
the corresponding eigenvalues El and E2: 

- Q : ( x ) +  v i ( x ) Q i ( x ) = E i J l i ( x )  (2.3) 

- $ ; ( X I +  V ~ ( X ) Q A X ) = E ~ J I I ( X ) .  (2.4) 

If we multiply (2.3) by Q2 and (2.4) by Q,, integrate over [O,  a), and subtract, we find: 

Since Q l ( x )  and Q2(x) are positive, the integral on the right is positive. Hence conditions 
which guarantee that the integral J on the left is (say) negative, imply that E,<  El. 
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The two main results of this section are obtained from (2.5) in this way. In fact, we 
claim the following: 

Theorem 1,  

(2.6) 

and 

Theorem 2. 

where i = 1 or 2. 
wc: o n a u  IUDL p u v c  (L.,,. TUC uc~iiiiic~icss we assumc inai i = I ;  ine proor IS just 

the same with the other choice. We study the integral J on the left side of (2.5). 
Integrating by parts we find 

. .r-"L.. , ,c-" .--....-, n,l\  m--.l-e-: *L.. . .~.L- ~ ~ ~ ~ . - .  

Since h(0)  = &(m) =OF the first term vanishes, and I i s  therefnre equal !o !he nega!ive 
of integral on the right side of (2.8). But the integrand of this integral is positive 
because h ( x ) s O ,  by hypothesis, and we h o w  that + i ( x ) c O  from (2.2). This proves 
that J S O .  Consequently, by (2.5), we know that E I S  E,, and this proves (2.7). The 
proof of (2.6) follows the above proof exactly: we simply replace + , ( x )  everywhere 
by the positive decreasing product JII(x)+ , (x) ,  and we replace h ( x )  by g ( x ) ,  and then 
all the steps go through similarly. 

If the two potentials do not cross over each other in very complicated ways, we 
can greatly simplify the conditions of our main results; such simplifications are useful 
in applications. For example, suppose that the potentials cross over as is illustrated 
in figure 3. Let A, B, and C represent the absolute values of the areas (or of the 

Figurc3. Two attractive symmetric potentials V, and V, shown for x>O. A, B, and C are 
the absolute values of the inter-potential areas (or #,-weighted areas). If A B  B, and CBO. 
then, according to theorem 1 (or Z), the potential ordering V, C V, on the region A i S  

sufficient to guarantee the spectral ordering E , <  E > .  
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+,-weighted areas) between the potentials. Then, if A 3 E, we know that g(x) CO, Vx 
(or h ( x )  < 0, Vx), and therefore that E, s E2.  Intuitively, the situation may be described 
as follows: if V, is beneath V2 (as soon as they differ), then, because of the monotonicity 
of the potentials and of the probability density for x > 0, min-max favours V,, provided 
that the potential cross-over is not too drastic. Of course, the theorems are needed to 
control the cross-overs so that we can guarantee spectral inequalities. Theorem 2 is 
stronger than theorem 1 because the condition, albeit requiring knowledge of the exact 
wavefunction (I,, is weaker: this follows because (I, is decreasing on [0, m) so that the 
potentials can cross over 'even more' and still lead to E, S E2 .  

As an immediate illustration of theorem 1, we return to the three power-law 
potentials mentioned in the introduction, namely, V , ( x )  = 1x1, V 2 ( x )  = x2, V4(x) = x", 
truncated at V ( x )  = 1.75, and shown in fi ure 2. Simple calculations show that 
lp [ V 2 ( x ) -  V , ( x ) ]  dx = -0.012 105, and I, [ V4(x) - V 2 ( x ) ]  dx = -0.068 02: these 
negative numbers predict the eigenvalue inequalities E, < E, and E4 < E,, which indeed 
are correct. Theorem 1 will be further illustrated in section 3, and the study of the 
Yukawa potential in section 5 makes very effective use of an extension of theorem 2 
to three dimensions which we establish in section 4. 

1% 

3. The truncated quartic oscillator 

We now study the example of the truncated quartic potential defined by 

where v is a positive coupling parameter. The comparison potentials are provided by 
the two-parameter family of square-wells defined by 

where a and d are positive parameters. In order to make the potential comparisons, 
we use v = 1.  The idea here is that the soluble square-well problem can be used to 
estimate the eigenvalue corresponding to the truncated quartic oscillator. We consider 
the three situations illustrated in figure 4. If we set a = d = 1, as shown in figure 4( (I), 
then we immediately get lower bounds ES by the usual comparison theorem. If we 

1 J 
( a )  ( b )  (C) 

Figure 4. The truncated quartic oscillator with energy E is compared to various square 
wells with energies E, .  In ( a )  the usual comparison theorem tells us that E > E, .  In (6) 
and ( e )  we have respectively E > E ,  and E < E, ,  even though the potentials now cross 
over. 
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set d = 1 and a = 0.8, then the potential cross-overs lead to two equal-areainter-potential 
regions: consequently we know that EL = E 2 S  E , ;  it is not difficult to show that EL 
is the best possible lower bound of this type. Finally, if we allow cross-overs as in 
figure 4(c), and set d = 1 - a4/5, for a E CO, 11, then the first two inter-potential areas 
are equal and it follows, again by theorem 1, that E, 6 E, (a ) .  The best upper bound 
EU of this collection is found by minimizing E2(a)  with respect to a E [0,1], for each 
choice of the coupling U. We exhibit our results in table 1, along with accurate values 
EN found by integrating Schrodinger's equation numerically. 

Table I. Ground-state eigenvalues for the quartic oscillator V ( x ) =  u(x4-1), truncated at 
V ( x )  = 1.75. The comparison potentials are the square wells shown respeclively in figures 
4(0, b, e ) .  The corresponding approximations are: ES derived from the usual comparison 
theorem; lower and upper bounds EL and ELI resulting from the new comparison theory; 
and accurate numerical values EN. 

" ES EL E N  ELI 

5 -3.853 -3.479 -3.373 -3.127 
10 -8.593 -8.059 -7.812 -7.298 
15 -13.453 -12.824 -12.443 -11.703 
-" 7" - ! e h !  -!?A66 -!?.!Se -16.224 
25 -23.293 -22.549 -21.926 -20.817 
30 -28.241 -27.458 -26.724 -25.460 
35 -33.199 -32.384 -31.545 -30.139 
40 -38.164 -37.322 -36.384 -34.847 

4. Problems in three dimensions 

We work in three spatial dimensions and prove an appropriate extension of theorem 
2. The ground state # ( r )  corresponding to a spherically-symmetric potential V ( r )  in 
three dimensions satisfies the radial equation: 

- # " ( r ) +  V ( r ) # ( r ) = E # ( r ) .  (4.1) 

The potential V is again assumed to be monotone increasing for r > O  and, in order 
to avoid complications which may arise with extremely singular potentials, we shall 
also assume that a number y exists such that 

lim r V ( r )  = y.  (4.2) 
,+" 

The boundary conditions of the problem may then be written [8,9] 

#(O)=O j o m # 2 ( x ) d x i m .  (4.3) 

(?)'<O r > 0. (4.4) 

It is also convenient to 'normalize' the radial wavefunction by simply setting #'(O) = 1. 
Just as for the problem in one dimension, we shall first need to establish an 

elementary monotonicity property for the ground state #. The result we need in this 
case is 
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We may establish this result by the following argument. Since Vis monotone increasing, 
we see from (4.1) that $ has only one turning point, say r = a. On the interval [0, a) 
therefore, #'I is negative, and furthermore, $' must continue to decrease beneath zero 
because $ must eventually vanisb. Hence, $'(b) = 0 for some b < a. Now consider the 
interval [O, bl: on this interval, $ is concave and lies therefore below its tangents and 
above its chords; consequently, O <  $ ' ( r )  < $ ( r ) / r .  Meanwhile, for r >  b, $'(r) < 0 ,  so, 
again: $'(r) < $( r ) / r ;  since the %round state $? which is node free, is itself positive. 
This establishes (4.4). We note that it follows from (4.1) and (4.2) that the initial value 
of ($ ( r ) / r ) '  is $"(0)/2= y /2 .  

If we now follow section 2 and write down the two Schrodinger equations, multiply 
by the respective wavefunctions, and integrate, we find again: 

I=\om[Vl(+ V,(r)l$l(r)$,(r)d*=[E,-~21 / om$l ( r )$2 ( r )dr .  (4.5) 

We may now state our generalization of theorem 2 to three dimensions: 

Theorem 3. 

k ( r ) =  [ V , ( t ) -  V,(t)]t$j(t)dfcO V r J E ,  s E, (4.6) I: 
where i = 1 or 2. 

We shall now prove (4.6). For definiteness we assume that i = 1; the proof is just 
the same with the other choice. We integrate the integral for I in (4.5) by parts to obtain 

(4.7) 

Since k(0 )  = $,(m) = 0, we see that the first term on the right-side of (4.7) vanishes. 
Meanwhile, the integrand of the second term is positive: this is so because k ( r )  is 
negative, by hypothesis, and the other factor is negative by (4.4). Consequently I e 0. 
This proves (4.6). We note that (4.6) can be viewed also as a comparison theorem for 
!he elgenva!ces cnrresponding !n !he firs! cxci!ed s!i?!e of ?he prnb!cn? in nae spztii! 
dimension. 

As we found in section 2, we can easily obtain simplifications to the negativity 
condition of this theorem. For example, if V, is less than V,, as soon as they differ, 
and if the potentials cross over only once, then we have the simpler condition: 

[ V,( t )  - V2(t)lt$8(t) dr O J  E,  E ,  (4.8) 

with i = 1 or 2. Similarly, if V, is less than V,,  as soon as they differ, and if the potentials 
cross over exactly twice, and the second cross-over point is r,, then we have: 

k(rJ  = j: [ V,(t)- V~(t)lt$,(t) dt O J  E,  s E, (4.9) 

with i = 1 or 2. These sufficient conditions are, of course, much more convenient to 
work with in practice than (4.6). If in the first example we set k ( m )  = 0, say, then (4.8) 
becomes a constraint on the choice of the comparison potential; and similarly for the 
second example. We shall employ these ideas to study the Yukawa potential in the 
next section. 
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5. The Yukawa and Coulomb potentials 

For the familiar (but shifted) hydrogenic atom we have the exact solution to (4.1) 
given by: 

v , ( r )=v(p -a / r )  +,( r )  = r e-”*“’ E,=u@-(ua)’ /4  (5.1) 
where U, a, and p are positive parameters. This will be our comparison problem. Our 
main concern in this section is, however, the Yukawa potential given by 

e-‘ 
r V,(r) = -U-. (5.2) 

In our earlier paper [SI we showed that the Yukawa potential is a concave transforma- 
tion g of -l/r. Tangents to g were then shifted Coulomb potentials, like V, in (5.1), 
and, for each U, one of these provided a best upper bound to E2 via the usual comparison 
theorem. By using theorem 3, we can now allow the potentials to cross over, and then 
we can optimize by choosing the best Coulomb potential in the sense that it leads to 
the best upper energy bound. 

We organize the problem in the following way. We let the Coulomb potential start 
out above the Yukawa (as soon as they differ), we let these potentials cross over twice, 
and we let r = x be the second intersection point. We use x as a parameter, and then 
we optimize with respect to x. Note that U cancels from some of the equations but it 
remains in the Coulomb wavefunction +, . We define the weighted-difference function 
d ( r ) = (  Vz(r)- V,(r))+,(r)r/u explicitly as follows: 

(5.3) 

We follow essentially the general example (4.9), with the potential subscripts inter- 
changed. The three equations we have to solve for the upper bound therefore become: 

(5.4) 

(5 .5 )  

EU=min (up-(ua/2) ’ ) .  (5 .6)  

In the case U = 15 we find, for example, a = 0.989 28, p = 0.843 82 and x = 0.241 39: 
the corresponding graph of the weighted-difference function d(r)  is shown in figure 
5 .  In our previous theory (the potential envelope method [SI) the condition for tangency 
of the Coulomb and Yukawa potentials was used instead of (5 .5 ) .  The earlier upper 
bounds EC are necessarily weaker than ELI because the tangential Coulomb potentials 
are now shifted down to produce the controlled cross-overs. The results which we 
obtain are shown in table 2, along with accurate values E N  which we have found 
numerically, and a lower bound EL to be discussed below. 

1, SO 

that the potentials agree at r = 0, and we allow only one cross-over, at r = x. This forces 
the Coulomb potential to lie below the Yukawa as soon as they differ, that is to say, 
on the interval (0, x). We then follow the general example (4.8) and require that 

e-”+px - a = 0 

j: d(r)  d r  = 0 

X>O 

We can also use the new theory to find a lower-bound formula. We set a 

JOm d( r )  d r =  0. (5.7) 
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0 r 0.3 

Flgure 5. For the Yukawa potential V,(r)  = -ISe-'f r, the upper Coulomb envelope V, of 
the earlier theory [ 5 ]  is pulled down V,-  VI to cross V, so that the integral 1; d ( r )  dr=O, 
when x is the second C ~ O S S - O V ~ T  point and d ( r ) = ( V 2 ( r ) -  V, (r ) )@,(r )r .  According to 
!heorem 3, this is sufficient tn parantra that E: < E ; ,  e v e  !hough !he potentials intarsect. 

Tablrl. Ground-stateeigenvalvesfortheYukawapotentia1 V ( r ) = - v  =-'fr. ECareupper 
bounds obtained by the envelope method [SI, EL and E U  are the lower and upper bounds 
resulting from the new comparison theory, and E N  are accurate numerical values. In the 
new theory, the Yukawa potential is allowed to cross aver the Coulomb comparison 
potential; consequently EU -= EC. 

V EL E N  EU EC 

I5 -43.793 -42.636 -42.394 -42.211 
30 -197.754 -196.439 -196.173 -195.979 
70 -1157.890 -1 156.473 -1156.192 -1155.991 

These two conditions immediately yield the relation 
U p = - [ 1 - (1 + 2/u)-2] 
4 

and finally, from (5.1), we find: 

U 2  
EL = -- (1 + 2 / 0 ) - 2 .  (5.9) 4 

For U >  -31.5, this lower bound is better than the lower bound of the inequalities 
U2 U2  

4 4 
-- (1 - Z / U ) ~  - (0 .056)~ < E S -- (1 -2/0)' (5.10) 

which we found earlier [5, 101. It may be of interest to generalize the simple formula 
(5.9) by allowing a range parameter A in the Yukawa potential. We find 

(5.11) 
e-*' U2 -A - U-+ E > EL = -- (1 + ~ A / u ) - ~ .  r 4 
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In either limits, A small, or v large, we recover the Coulomb result -v2/4 from this 
formula. 

We obtain a more physical illustration if, following McEnnan et al [ll],  we choose 
a set of Yukawa parameters suitable for atoms with atomic number Z by the assign- 
ments: 

A = A,poZ1" v = 2Z2"/A, (5.12) 

where Ao=1.13,no=(137.037)~1, and the energy in keV is given by the relation: 
Energy= (255.4846)EA2. Some results which we have obtained using the methods 
described above are shown in table 3, along with numerical values EN from [ I l l .  The 
improvement of EU over the earlier Coulomb-envelope approximations EC is evident 
from this data. 

Table 3. Ground-state eigenvalues in keV for the Yukawa potential applied to the outer 
elearons of atoms with atomic number Z n e  approximations EC, EL, and E l l  are as in 
table 2; the numerical values EN are from McEnnan el 01 [ll]. 

z EL EN ELI EC 

13 -1.585 -1.488 -1.466 -1.450 
36 -14.476 -14.24 -14.196 -14.16 
79 -75.371 -74.95 -74.861 -74.80 

6. Conclusion 

We have shown in this paper that the condition VI < V,, which implies the spectral 
inequality E, < E,, can be replaced with the weaker condition U, < U,, where U,(x)  = 
rx ;,,.\-,.\ 
Yukawa-Coulomb illustration demonstrates that our results apply to the first two 
eigenvalues of the corresponding problem in one dimension. By suitably choosing the 
comparison potentials for a given problem, we can generate both lower and upper 
energy bounds, and we can also optimize the bounds over classes of comparison 
potentials that meet the sufficient condition U, < U,. Because these results depend on 

that the generalization of these methods to higher eigenvalues, beyond the first two, 
may not easily be achieved. 

It has become so comfortable today to solve problems numerically that a strong 
selection pressure is now applied on analytical methods: if they are very complicated, 
then we may run out of patience with them and turn instead to the computer. The 
n n n l ~ + i r m l  mnnm-rh mmn;n= n n r t i m l w l v  v - l n r h l m  if it  l r l r l r  tn r e w l t r  whirh ~ I P  either "..".,'.". ..Yy.""". I..L..".L." F"..."....-..J ."..."-.- 1. ...-..- I .I 1" --..I ,.... 1.. -.- ------- 
very general, or very simple. We believe that the results of this paper have both these 
aspects. They supply new general conditions for the relation between a potential and 
the Schrodinger spectrum it generates, and they provide some simple ways in which 
the spectrum may be approximated in terms of the spectra associated with suitable 
soluble comparison potentials. 

j 0  t \ ~ , p \ c ~  U', 1 = 1, L, aiid p is a j i i i iatk pojitke iioii-iiiiieajiiig fiiiiaioii. Thie 

-n-,+n-:n h.nh-..: -..- :-.heirnrl l.., +ha . ~ o r . ~ F . . - . + : ~ ~ ~  F--- +ha m+a-+:nll ...- ~ n i c n - r t  
.II"..YLY..... "II.OI".Y"I . . L I . I I I I I "  "J L..l . . " I I I "L I . . .L .YL. I  L I Y . 2 .  ..L1 y".vL'L'U'", ".. '.."Y'I. 



Refining the comparison theorem 4469 

Acknowledgment 

Partial financial support of this work under Grant No. GP3438 from the Natural 
Sciences and Engineering Research Council of Canada is gratefully acknowledged. 

D^C"m""- 
nr.r..z"L.zO 

[ I ]  Reed M and Simon B 1981 Methods of Modem Mathematical Physics IV: Analysis of Operators (New 

[2] Thining W 1981 A Course in Mathematical Physics 3; Quantum Mechanics of Atoms and Molecules 

[3] Epstein B 1970 Linear Functional Analysis: Inrroduetion IO Lebesgue Integration m d  In@nite-Dimensional 

[4] Hall R L 1989 Phys. Rea A 39 5500 
[5J Hall R L 1985 Phys. Reu. A 32 14 
[6] Boya L I, Kmiecik M and Bohm A 1988 Phys. Rev. A 37 3567 
[7] NGAez YCpez H N, Vargas C A and Salas Brit0 A L 1989 Phys. Rev. A 39 4306 
[E] Messiah A 1961 @antum Mechanics vol I (Amsterdam: North-Holland) p350 
[9] Armstrong B H and Power E A 1963 Am. J.  Phys. 31 262 

York: Academic) p 16 

(Berlin: Springer) p 152 

Problems (Philadelphia, PA: Saunders) 

[IO] Hall R L 1992 J. Phys. A: Moth. Gen. 25 1373 
[ I l l  McEnnan I, Kissel Land Ratt R H 1976 Phys. Reo. A 13 532 


